Weakly supervised high spatial resolution land cover mapping based on self-training with weighted pseudo-labels
Despite its success, deep learning in land cover mapping requires a massive amount of pixel-wise labeled images. It typically assumes that the training and test scenes are similar in data distribution. The performance of models trained on any particular dataset could degrade significantly on a new d...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-08-01
|
Series: | International Journal of Applied Earth Observations and Geoinformation |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1569843222001297 |