In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal

Calcium oxalate monohydrate (COM) crystal is the major crystalline component of human kidney stones. Its growth event at the nanometer and micrometer scales, i.e., the growth of the COM molecular steps generated from the dislocation outcrop on the crystal surface and its inhibition by associated aci...

Full description

Bibliographic Details
Main Author: Kang Rae Cho
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/13/6/889
_version_ 1797595430100402176
author Kang Rae Cho
author_facet Kang Rae Cho
author_sort Kang Rae Cho
collection DOAJ
description Calcium oxalate monohydrate (COM) crystal is the major crystalline component of human kidney stones. Its growth event at the nanometer and micrometer scales, i.e., the growth of the COM molecular steps generated from the dislocation outcrop on the crystal surface and its inhibition by associated acidic organic molecules such as citrate, is now well understood by studies conducted using in situ liquid-phase atomic force microscopy (AFM). Yet, the detailed assessment of the evolution of the COM molecular steps at the dislocation outcrop has been poorly conducted. Herein, in situ liquid-phase AFM was used to primarily investigate how those COM molecular steps are generated on a COM broadest crystal surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) and influenced by a model acidic peptide, L-aspartic acid 6mer (L-Asp<sub>6</sub>) adsorbed onto the emerging steps and terraces on the surface. Like many other mineral crystals, a segment of the pseudo-triangle-shaped step spiral, in the process of its birth from the dislocation outcrop, starts to move after reaching the critical step length. When the budding step spiral got adsorption of L-Asp<sub>6</sub> to it, it appeared rather with ellipse-like hexagonal morphology—which is reflected in the bulk crystal morphology—implying changes in orientation-dependent step edge energy and much-delayed spiral generation time.
first_indexed 2024-03-11T02:36:19Z
format Article
id doaj.art-f0bd3e6e14d4467a8945e87f8add1bd1
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-11T02:36:19Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-f0bd3e6e14d4467a8945e87f8add1bd12023-11-18T09:56:11ZengMDPI AGCrystals2073-43522023-05-0113688910.3390/cryst13060889In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate CrystalKang Rae Cho0Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of KoreaCalcium oxalate monohydrate (COM) crystal is the major crystalline component of human kidney stones. Its growth event at the nanometer and micrometer scales, i.e., the growth of the COM molecular steps generated from the dislocation outcrop on the crystal surface and its inhibition by associated acidic organic molecules such as citrate, is now well understood by studies conducted using in situ liquid-phase atomic force microscopy (AFM). Yet, the detailed assessment of the evolution of the COM molecular steps at the dislocation outcrop has been poorly conducted. Herein, in situ liquid-phase AFM was used to primarily investigate how those COM molecular steps are generated on a COM broadest crystal surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) and influenced by a model acidic peptide, L-aspartic acid 6mer (L-Asp<sub>6</sub>) adsorbed onto the emerging steps and terraces on the surface. Like many other mineral crystals, a segment of the pseudo-triangle-shaped step spiral, in the process of its birth from the dislocation outcrop, starts to move after reaching the critical step length. When the budding step spiral got adsorption of L-Asp<sub>6</sub> to it, it appeared rather with ellipse-like hexagonal morphology—which is reflected in the bulk crystal morphology—implying changes in orientation-dependent step edge energy and much-delayed spiral generation time.https://www.mdpi.com/2073-4352/13/6/889calcium oxalate monohydrate crystalin situ liquid-phase atomic force microscopystep spiral generationL-aspartic acid 6mer
spellingShingle Kang Rae Cho
In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal
Crystals
calcium oxalate monohydrate crystal
in situ liquid-phase atomic force microscopy
step spiral generation
L-aspartic acid 6mer
title In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal
title_full In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal
title_fullStr In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal
title_full_unstemmed In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal
title_short In Situ Liquid-Phase AFM Observation of the Molecular Step Spiral Generation on the (<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo>−</mo></mover></mrow></semantics></math></inline-formula>01) Surface of Calcium Oxalate Monohydrate Crystal
title_sort in situ liquid phase afm observation of the molecular step spiral generation on the inline formula math display inline semantics mrow mover accent true mrow mn 1 mn mrow mo mo mover mrow semantics math inline formula 01 surface of calcium oxalate monohydrate crystal
topic calcium oxalate monohydrate crystal
in situ liquid-phase atomic force microscopy
step spiral generation
L-aspartic acid 6mer
url https://www.mdpi.com/2073-4352/13/6/889
work_keys_str_mv AT kangraecho insituliquidphaseafmobservationofthemolecularstepspiralgenerationontheinlineformulamathdisplayinlinesemanticsmrowmoveraccenttruemrowmn1mnmrowmomomovermrowsemanticsmathinlineformula01surfaceofcalciumoxalatemonohydratecrystal