Development and evaluation of a deep learning segmentation model for assessing non-surgical endodontic treatment outcomes on periapical radiographs: A retrospective study.
This study aimed to evaluate the performance of a deep learning-based segmentation model for predicting outcomes of non-surgical endodontic treatment. Preoperative and 3-year postoperative periapical radiographic images of each tooth from routine root canal treatments performed by endodontists from...
المؤلفون الرئيسيون: | Dennis Dennis, Siriwan Suebnukarn, Sothana Vicharueang, Wasit Limprasert |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Public Library of Science (PLoS)
2024-01-01
|
سلاسل: | PLoS ONE |
الوصول للمادة أونلاين: | https://doi.org/10.1371/journal.pone.0310925 |
مواد مشابهة
-
AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer.
حسب: Kritsasith Warin, وآخرون
منشور في: (2022-01-01) -
Maxillofacial fracture detection and classification in computed tomography images using convolutional neural network-based models
حسب: Kritsasith Warin, وآخرون
منشور في: (2023-03-01) -
Histopathologic Evaluation of Periapical Radiolucencies Clinico-Radiographically Diagnosed as Endodontic Lesions: A Retrospective Analysis
حسب: Saede Atarbashi-Moghadam, وآخرون
منشور في: (2024-03-01) -
RADIOGRAPHIC EVALUATION OF PERIAPICAL STATUS AND FREQUENCY OF ENDODONTIC TREATMENT IN A TURKISH POPULATION:A RETROSPECTIVE STUDY*
حسب: Melek TAŞSÖKER, وآخرون
منشور في: (2016-04-01) -
Automatic Feature Segmentation in Dental Periapical Radiographs
حسب: Tugba Ari, وآخرون
منشور في: (2022-12-01)