Editable Image Generation with Consistent Unsupervised Disentanglement Based on GAN
Generative adversarial networks (GANs) are often used to generate realistic images, and GANs are effective in fitting high-dimensional probability distributions. However, during training, they often produce model collapse, which is the inability of the generative model to map the input noise to the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/11/5382 |