DA-FSOD: A Novel Data Augmentation Scheme for Few-Shot Object Detection
Deep learning techniques continue to be used in various applications in recent years. However, when it is difficult to obtain adequate training samples, the performance of the depth model will degrade. Although few-shot learning and data enhancement techniques can relieve this dilemma, the diversity...
Главные авторы: | Jian Yao, Tianyun Shi, Xiaoping Che, Jie Yao, Liuyi Wu |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
IEEE
2023-01-01
|
Серии: | IEEE Access |
Предметы: | |
Online-ссылка: | https://ieeexplore.ieee.org/document/10227279/ |
Схожие документы
-
FSOD4RSI: Few-Shot Object Detection for Remote Sensing Images via Features Aggregation and Scale Attention
по: Honghao Gao, и др.
Опубликовано: (2024-01-01) -
Few-shot object detection based on positive-sample improvement
по: Yan Ouyang, и др.
Опубликовано: (2023-10-01) -
Multi-Similarity Enhancement Network for Few-Shot Segmentation
по: Hao Chen, и др.
Опубликовано: (2023-01-01) -
Few-Shot Object Detection in Remote Sensing Image Interpretation: Opportunities and Challenges
по: Sixu Liu, и др.
Опубликовано: (2022-09-01) -
Improving Augmentation Efficiency for Few-Shot Learning
по: Wonhee Cho, и др.
Опубликовано: (2022-01-01)