A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining
Educational data mining is capable of producing useful data-driven applications (e.g., early warning systems in schools or the prediction of students’ academic achievement) based on predictive models. However, the class imbalance problem in educational datasets could hamper the accuracy of predictiv...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | Information |
Subjects: | |
Online Access: | https://www.mdpi.com/2078-2489/14/1/54 |