A New Hybrid Stepper Motor, Compliant Piezoelectric Micro-Tweezer for Extended Stroke

The revolutionary economic potential of micro and nanotechnology is already recognized. Micro and nano-scale technologies that use electrical, magnetic, optical, mechanical, and thermal phenomena separately or in combination are either already in the industrial phase or approaching it. The products...

Full description

Bibliographic Details
Main Authors: Ioan Alexandru Ivan, Dan Cristian Noveanu, Valentin Ion Gurgu, Veronica Despa, Simona Noveanu
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/6/1112
Description
Summary:The revolutionary economic potential of micro and nanotechnology is already recognized. Micro and nano-scale technologies that use electrical, magnetic, optical, mechanical, and thermal phenomena separately or in combination are either already in the industrial phase or approaching it. The products of micro and nanotechnology are made of small quantities of material but have high functionality and added value. This paper presents such a product: a system with micro-tweezers for biomedical applications—a micromanipulator with optimized constructive characteristics, including optimal centering, consumption, and minimum size, for handling micro-particles and constructive micro components. The advantage of the proposed structure consists mainly in obtaining a large working area combined with a good working resolution due to the double actuation principle: electromagnetic and piezoelectric.
ISSN:2072-666X