Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function

Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NE...

Full description

Bibliographic Details
Main Authors: K. M. Hudock, M. S. Collins, M. A. Imbrogno, E. L. Kramer, J. J. Brewington, A. Ziady, N. Zhang, J. Snowball, Y. Xu, B. C. Carey, Y. Horio, S. M. O’Grady, E. J. Kopras, J. Meeker, H. Morgan, A. J. Ostmann, E. Skala, M. E. Siefert, C. L. Na, C. R. Davidson, K. Gollomp, N. Mangalmurti, B. C. Trapnell, J. P. Clancy
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-01-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2022.1023553/full
_version_ 1797956415028985856
author K. M. Hudock
K. M. Hudock
K. M. Hudock
M. S. Collins
M. A. Imbrogno
E. L. Kramer
E. L. Kramer
J. J. Brewington
J. J. Brewington
A. Ziady
A. Ziady
N. Zhang
N. Zhang
J. Snowball
Y. Xu
Y. Xu
Y. Xu
B. C. Carey
B. C. Carey
Y. Horio
Y. Horio
S. M. O’Grady
S. M. O’Grady
E. J. Kopras
J. Meeker
H. Morgan
A. J. Ostmann
E. Skala
M. E. Siefert
C. L. Na
C. R. Davidson
K. Gollomp
K. Gollomp
N. Mangalmurti
N. Mangalmurti
B. C. Trapnell
B. C. Trapnell
B. C. Trapnell
J. P. Clancy
author_facet K. M. Hudock
K. M. Hudock
K. M. Hudock
M. S. Collins
M. A. Imbrogno
E. L. Kramer
E. L. Kramer
J. J. Brewington
J. J. Brewington
A. Ziady
A. Ziady
N. Zhang
N. Zhang
J. Snowball
Y. Xu
Y. Xu
Y. Xu
B. C. Carey
B. C. Carey
Y. Horio
Y. Horio
S. M. O’Grady
S. M. O’Grady
E. J. Kopras
J. Meeker
H. Morgan
A. J. Ostmann
E. Skala
M. E. Siefert
C. L. Na
C. R. Davidson
K. Gollomp
K. Gollomp
N. Mangalmurti
N. Mangalmurti
B. C. Trapnell
B. C. Trapnell
B. C. Trapnell
J. P. Clancy
author_sort K. M. Hudock
collection DOAJ
description Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.
first_indexed 2024-04-10T23:49:45Z
format Article
id doaj.art-f5f449250f9b4c29852fec5e049dfdcd
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-04-10T23:49:45Z
publishDate 2023-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-f5f449250f9b4c29852fec5e049dfdcd2023-01-10T21:37:58ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-01-011310.3389/fimmu.2022.10235531023553Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier functionK. M. Hudock0K. M. Hudock1K. M. Hudock2M. S. Collins3M. A. Imbrogno4E. L. Kramer5E. L. Kramer6J. J. Brewington7J. J. Brewington8A. Ziady9A. Ziady10N. Zhang11N. Zhang12J. Snowball13Y. Xu14Y. Xu15Y. Xu16B. C. Carey17B. C. Carey18Y. Horio19Y. Horio20S. M. O’Grady21S. M. O’Grady22E. J. Kopras23J. Meeker24H. Morgan25A. J. Ostmann26E. Skala27M. E. Siefert28C. L. Na29C. R. Davidson30K. Gollomp31K. Gollomp32N. Mangalmurti33N. Mangalmurti34B. C. Trapnell35B. C. Trapnell36B. C. Trapnell37J. P. Clancy38Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivisions of Biomedical Informatics, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesTranslational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDepartment of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto-shi, Kumamoto, Japan0Departments of Animal Science, University of Minnesota, St. Paul, MN, United States1Department of Integrative Biology and Physiology, University of Minnesota, St. Paul, MN, United StatesDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDivision of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United StatesDivision of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States2Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States3Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States4Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States5Pennsylvania Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United StatesDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesDepartment of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United StatesTranslational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States6Cystic Fibrosis Foundation, Bethesda, MD, United StatesNeutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.https://www.frontiersin.org/articles/10.3389/fimmu.2022.1023553/fullNETs (neutrophil extracellular traps)alpha-1 antitrypsin (A1AT)barrier functionbronchial epitheliaE-cadherin (CDH1)
spellingShingle K. M. Hudock
K. M. Hudock
K. M. Hudock
M. S. Collins
M. A. Imbrogno
E. L. Kramer
E. L. Kramer
J. J. Brewington
J. J. Brewington
A. Ziady
A. Ziady
N. Zhang
N. Zhang
J. Snowball
Y. Xu
Y. Xu
Y. Xu
B. C. Carey
B. C. Carey
Y. Horio
Y. Horio
S. M. O’Grady
S. M. O’Grady
E. J. Kopras
J. Meeker
H. Morgan
A. J. Ostmann
E. Skala
M. E. Siefert
C. L. Na
C. R. Davidson
K. Gollomp
K. Gollomp
N. Mangalmurti
N. Mangalmurti
B. C. Trapnell
B. C. Trapnell
B. C. Trapnell
J. P. Clancy
Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
Frontiers in Immunology
NETs (neutrophil extracellular traps)
alpha-1 antitrypsin (A1AT)
barrier function
bronchial epithelia
E-cadherin (CDH1)
title Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
title_full Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
title_fullStr Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
title_full_unstemmed Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
title_short Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
title_sort alpha 1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function
topic NETs (neutrophil extracellular traps)
alpha-1 antitrypsin (A1AT)
barrier function
bronchial epithelia
E-cadherin (CDH1)
url https://www.frontiersin.org/articles/10.3389/fimmu.2022.1023553/full
work_keys_str_mv AT kmhudock alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT kmhudock alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT kmhudock alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT mscollins alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT maimbrogno alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT elkramer alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT elkramer alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT jjbrewington alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT jjbrewington alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT aziady alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT aziady alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT nzhang alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT nzhang alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT jsnowball alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT yxu alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT yxu alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT yxu alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT bccarey alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT bccarey alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT yhorio alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT yhorio alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT smogrady alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT smogrady alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT ejkopras alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT jmeeker alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT hmorgan alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT ajostmann alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT eskala alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT mesiefert alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT clna alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT crdavidson alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT kgollomp alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT kgollomp alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT nmangalmurti alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT nmangalmurti alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT bctrapnell alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT bctrapnell alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT bctrapnell alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction
AT jpclancy alpha1antitrypsinlimitsneutrophilextracellulartrapdisruptionofairwayepithelialbarrierfunction