Laplacian Spectral Properties of Signed Circular Caterpillars
A circular caterpillar of girth $n$ is a graph such that the removal of all pendant vertices yields a cycle $C_n$ of order $n$. A signed graph is a pair $\Gamma=(G, \sigma)$, where $G$ is a simple graph and $\sigma: E(G) \rightarrow \{+1, -1\}$ is the sign function defined on the set $E(G)$ of edges...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Georgia Southern University
2020-07-01
|
Series: | Theory and Applications of Graphs |
Subjects: | |
Online Access: | https://digitalcommons.georgiasouthern.edu/tag/vol7/iss2/1 |