Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates

We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ∼10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ∼0.14 eV. Contrary to prior observations of disordered transport and severe edge-roughness effects of graphene nanori...

Full description

Bibliographic Details
Main Authors: Wan Sik Hwang, Pei Zhao, Kristof Tahy, Luke O. Nyakiti, Virginia D. Wheeler, Rachael L. Myers-Ward, Charles R. Eddy Jr., D. Kurt Gaskill, Joshua A. Robinson, Wilfried Haensch, Huili (Grace) Xing, Alan Seabaugh, Debdeep Jena
Format: Article
Language:English
Published: AIP Publishing LLC 2015-01-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.4905155
_version_ 1818351519123111936
author Wan Sik Hwang
Pei Zhao
Kristof Tahy
Luke O. Nyakiti
Virginia D. Wheeler
Rachael L. Myers-Ward
Charles R. Eddy Jr.
D. Kurt Gaskill
Joshua A. Robinson
Wilfried Haensch
Huili (Grace) Xing
Alan Seabaugh
Debdeep Jena
author_facet Wan Sik Hwang
Pei Zhao
Kristof Tahy
Luke O. Nyakiti
Virginia D. Wheeler
Rachael L. Myers-Ward
Charles R. Eddy Jr.
D. Kurt Gaskill
Joshua A. Robinson
Wilfried Haensch
Huili (Grace) Xing
Alan Seabaugh
Debdeep Jena
author_sort Wan Sik Hwang
collection DOAJ
description We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ∼10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ∼0.14 eV. Contrary to prior observations of disordered transport and severe edge-roughness effects of graphene nanoribbons (GNRs), the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors and remain potential candidates for electronic switching devices.
first_indexed 2024-12-13T18:39:01Z
format Article
id doaj.art-f6675ef631ae41bdac76276af5a6c515
institution Directory Open Access Journal
issn 2166-532X
language English
last_indexed 2024-12-13T18:39:01Z
publishDate 2015-01-01
publisher AIP Publishing LLC
record_format Article
series APL Materials
spelling doaj.art-f6675ef631ae41bdac76276af5a6c5152022-12-21T23:35:17ZengAIP Publishing LLCAPL Materials2166-532X2015-01-0131011101011101-910.1063/1.4905155001501APMGraphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substratesWan Sik Hwang0Pei Zhao1Kristof Tahy2Luke O. Nyakiti3Virginia D. Wheeler4Rachael L. Myers-Ward5Charles R. Eddy Jr.6D. Kurt Gaskill7Joshua A. Robinson8Wilfried Haensch9Huili (Grace) Xing10Alan Seabaugh11Debdeep Jena12 Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USAU. S. Naval Research Laboratory, Washington, DC 20375, USAU. S. Naval Research Laboratory, Washington, DC 20375, USAU. S. Naval Research Laboratory, Washington, DC 20375, USAU. S. Naval Research Laboratory, Washington, DC 20375, USAU. S. Naval Research Laboratory, Washington, DC 20375, USAMaterials Science and Engineering & Center of 2D & Layered Materials, Pennsylvania State University, University Park, Pennsylvania 16802, USAIBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USAWe report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ∼10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ∼0.14 eV. Contrary to prior observations of disordered transport and severe edge-roughness effects of graphene nanoribbons (GNRs), the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors and remain potential candidates for electronic switching devices.http://dx.doi.org/10.1063/1.4905155
spellingShingle Wan Sik Hwang
Pei Zhao
Kristof Tahy
Luke O. Nyakiti
Virginia D. Wheeler
Rachael L. Myers-Ward
Charles R. Eddy Jr.
D. Kurt Gaskill
Joshua A. Robinson
Wilfried Haensch
Huili (Grace) Xing
Alan Seabaugh
Debdeep Jena
Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
APL Materials
title Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
title_full Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
title_fullStr Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
title_full_unstemmed Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
title_short Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
title_sort graphene nanoribbon field effect transistors on wafer scale epitaxial graphene on sic substrates
url http://dx.doi.org/10.1063/1.4905155
work_keys_str_mv AT wansikhwang graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT peizhao graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT kristoftahy graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT lukeonyakiti graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT virginiadwheeler graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT rachaellmyersward graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT charlesreddyjr graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT dkurtgaskill graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT joshuaarobinson graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT wilfriedhaensch graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT huiligracexing graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT alanseabaugh graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates
AT debdeepjena graphenenanoribbonfieldeffecttransistorsonwaferscaleepitaxialgrapheneonsicsubstrates