Mixture Semisupervised Bayesian Principal Component Regression for Soft Sensor Modeling
In this paper, a mixture semisupervised Bayesian principal component regression-based soft sensor modeling method for nonlinear industrial process with multiple operating modes is presented. In many chemistry processes, part of output data samples may be unavailable due to the difficulties in measur...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2018-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8418691/ |