Heading control for quadruped stair climbing based on PD controller for the KRSRI competition

Quadruped, a robot that resembles four-legged animals, is developed for many purposes, such as surveillance and rescue. Such a caveat requires the robot to have the capability to overcome various terrain and obstacles. When moving across such a landscape, it is essential to maintain the robot's...

Full description

Bibliographic Details
Main Authors: Khairurizal Alfathdyanto, Adytia Darmawan, Ali Husein Alasiry, Ahmad Taufik
Format: Article
Language:Indonesian
Published: Department of Electrical Engineering, Faculty of Engineering, Tanjungpura University 2023-10-01
Series:Elkha: Jurnal Teknik Elektro
Subjects:
Online Access:https://jurnal.untan.ac.id/index.php/Elkha/article/view/70381
Description
Summary:Quadruped, a robot that resembles four-legged animals, is developed for many purposes, such as surveillance and rescue. Such a caveat requires the robot to have the capability to overcome various terrain and obstacles. When moving across such a landscape, it is essential to maintain the robot's orientation steadily. Inclined terrains such as stairs have posed another challenge to the control strategy as the robot is unstable while climbing. Therefore, the contribution of this work is to address the need for heading control because of the relatively longer stairs used for the current competition compared to the past. The proposed control system simultaneously maintains the heading while keeping the body stable. The inertial measurement unit sensor carried by the robot would provide the pose needed for heading control calculations. The robot's heading becomes the base for the PD controller calculation. The final pose that stabilizes the robot while tackling heading error is a combination of correction from the PD controller and the stabilization part of the control strategy. Then, the leg servo angle determination deployed the inverse kinematics calculation from the suitable robot pose. The proposed method enabled the designed robot to maintain its heading with a 4.4-degree margin of error and stabilize the body. The quadruped also completes the stair climbing at the shortest time of 20 seconds with a speed of up to 5.5 centimeters per second.
ISSN:1858-1463
2580-6807