CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX

Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvir...

Full description

Bibliographic Details
Main Authors: Jack T. Whelan, Ragunath Singaravelu, Fuan Wang, Adrian Pelin, Levi A. Tamming, Giuseppe Pugliese, Nikolas T. Martin, Mathieu J. F. Crupi, Julia Petryk, Bradley Austin, Xiaohong He, Ricardo Marius, Jessie Duong, Carter Jones, Emily E. F. Fekete, Nouf Alluqmani, Andrew Chen, Stephen Boulton, Michael S. Huh, Matt Y. Tang, Zaid Taha, Elena Scut, Jean-Simon Diallo, Taha Azad, Brian D. Lichty, Carolina S. Ilkow, John C. Bell
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-01-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2022.1050250/full
_version_ 1828065235600146432
author Jack T. Whelan
Jack T. Whelan
Ragunath Singaravelu
Ragunath Singaravelu
Ragunath Singaravelu
Fuan Wang
Fuan Wang
Adrian Pelin
Adrian Pelin
Levi A. Tamming
Levi A. Tamming
Giuseppe Pugliese
Nikolas T. Martin
Nikolas T. Martin
Mathieu J. F. Crupi
Mathieu J. F. Crupi
Julia Petryk
Bradley Austin
Xiaohong He
Ricardo Marius
Ricardo Marius
Jessie Duong
Jessie Duong
Carter Jones
Emily E. F. Fekete
Emily E. F. Fekete
Nouf Alluqmani
Nouf Alluqmani
Andrew Chen
Stephen Boulton
Stephen Boulton
Michael S. Huh
Matt Y. Tang
Zaid Taha
Zaid Taha
Elena Scut
Elena Scut
Jean-Simon Diallo
Jean-Simon Diallo
Taha Azad
Taha Azad
Brian D. Lichty
Brian D. Lichty
Carolina S. Ilkow
Carolina S. Ilkow
John C. Bell
John C. Bell
author_facet Jack T. Whelan
Jack T. Whelan
Ragunath Singaravelu
Ragunath Singaravelu
Ragunath Singaravelu
Fuan Wang
Fuan Wang
Adrian Pelin
Adrian Pelin
Levi A. Tamming
Levi A. Tamming
Giuseppe Pugliese
Nikolas T. Martin
Nikolas T. Martin
Mathieu J. F. Crupi
Mathieu J. F. Crupi
Julia Petryk
Bradley Austin
Xiaohong He
Ricardo Marius
Ricardo Marius
Jessie Duong
Jessie Duong
Carter Jones
Emily E. F. Fekete
Emily E. F. Fekete
Nouf Alluqmani
Nouf Alluqmani
Andrew Chen
Stephen Boulton
Stephen Boulton
Michael S. Huh
Matt Y. Tang
Zaid Taha
Zaid Taha
Elena Scut
Elena Scut
Jean-Simon Diallo
Jean-Simon Diallo
Taha Azad
Taha Azad
Brian D. Lichty
Brian D. Lichty
Carolina S. Ilkow
Carolina S. Ilkow
John C. Bell
John C. Bell
author_sort Jack T. Whelan
collection DOAJ
description Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies.
first_indexed 2024-04-10T23:11:45Z
format Article
id doaj.art-f7cfd3f77d384dec8678da5baade9481
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-04-10T23:11:45Z
publishDate 2023-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-f7cfd3f77d384dec8678da5baade94812023-01-13T05:49:38ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-01-011310.3389/fimmu.2022.10502501050250CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOXJack T. Whelan0Jack T. Whelan1Ragunath Singaravelu2Ragunath Singaravelu3Ragunath Singaravelu4Fuan Wang5Fuan Wang6Adrian Pelin7Adrian Pelin8Levi A. Tamming9Levi A. Tamming10Giuseppe Pugliese11Nikolas T. Martin12Nikolas T. Martin13Mathieu J. F. Crupi14Mathieu J. F. Crupi15Julia Petryk16Bradley Austin17Xiaohong He18Ricardo Marius19Ricardo Marius20Jessie Duong21Jessie Duong22Carter Jones23Emily E. F. Fekete24Emily E. F. Fekete25Nouf Alluqmani26Nouf Alluqmani27Andrew Chen28Stephen Boulton29Stephen Boulton30Michael S. Huh31Matt Y. Tang32Zaid Taha33Zaid Taha34Elena Scut35Elena Scut36Jean-Simon Diallo37Jean-Simon Diallo38Taha Azad39Taha Azad40Brian D. Lichty41Brian D. Lichty42Carolina S. Ilkow43Carolina S. Ilkow44John C. Bell45John C. Bell46Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaPublic Health Agency of Canada, Ottawa, ON, CanadaMcMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, CanadaMG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaMcMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, CanadaMG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, CanadaCentre for Innovation Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, CanadaPoxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies. https://www.frontiersin.org/articles/10.3389/fimmu.2022.1050250/fullCRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)vaccinia virus (VACV)STING agonistpoxvirusoncolytic virus
spellingShingle Jack T. Whelan
Jack T. Whelan
Ragunath Singaravelu
Ragunath Singaravelu
Ragunath Singaravelu
Fuan Wang
Fuan Wang
Adrian Pelin
Adrian Pelin
Levi A. Tamming
Levi A. Tamming
Giuseppe Pugliese
Nikolas T. Martin
Nikolas T. Martin
Mathieu J. F. Crupi
Mathieu J. F. Crupi
Julia Petryk
Bradley Austin
Xiaohong He
Ricardo Marius
Ricardo Marius
Jessie Duong
Jessie Duong
Carter Jones
Emily E. F. Fekete
Emily E. F. Fekete
Nouf Alluqmani
Nouf Alluqmani
Andrew Chen
Stephen Boulton
Stephen Boulton
Michael S. Huh
Matt Y. Tang
Zaid Taha
Zaid Taha
Elena Scut
Elena Scut
Jean-Simon Diallo
Jean-Simon Diallo
Taha Azad
Taha Azad
Brian D. Lichty
Brian D. Lichty
Carolina S. Ilkow
Carolina S. Ilkow
John C. Bell
John C. Bell
CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
Frontiers in Immunology
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)
vaccinia virus (VACV)
STING agonist
poxvirus
oncolytic virus
title CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_full CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_fullStr CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_full_unstemmed CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_short CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_sort crispr mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic stingpox
topic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)
vaccinia virus (VACV)
STING agonist
poxvirus
oncolytic virus
url https://www.frontiersin.org/articles/10.3389/fimmu.2022.1050250/full
work_keys_str_mv AT jacktwhelan crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT jacktwhelan crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT ragunathsingaravelu crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT ragunathsingaravelu crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT ragunathsingaravelu crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT fuanwang crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT fuanwang crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT adrianpelin crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT adrianpelin crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT leviatamming crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT leviatamming crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT giuseppepugliese crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT nikolastmartin crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT nikolastmartin crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT mathieujfcrupi crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT mathieujfcrupi crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT juliapetryk crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT bradleyaustin crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT xiaohonghe crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT ricardomarius crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT ricardomarius crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT jessieduong crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT jessieduong crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT carterjones crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT emilyeffekete crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT emilyeffekete crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT noufalluqmani crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT noufalluqmani crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT andrewchen crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT stephenboulton crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT stephenboulton crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT michaelshuh crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT mattytang crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT zaidtaha crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT zaidtaha crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT elenascut crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT elenascut crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT jeansimondiallo crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT jeansimondiallo crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT tahaazad crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT tahaazad crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT briandlichty crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT briandlichty crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT carolinasilkow crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT carolinasilkow crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT johncbell crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT johncbell crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox