Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Variant calling from scRNA-seq...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines

Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines

Bibliographic Details
Main Authors: Daniele Ramazzotti, Fabrizio Angaroni, Davide Maspero, Gianluca Ascolani, Isabella Castiglioni, Rocco Piazza, Marco Antoniotti, Alex Graudenzi
Format: Article
Language:English
Published: Nature Portfolio 2022-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-30230-w
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1038/s41467-022-30230-w

Similar Items

  • Early detection and improved genomic surveillance of SARS-CoV-2 variants from deep sequencing data
    by: Daniele Ramazzotti, et al.
    Published: (2022-06-01)
  • Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity
    by: Alex Graudenzi, et al.
    Published: (2021-02-01)
  • LACE 2.0: an interactive R tool for the inference and visualization of longitudinal cancer evolution
    by: Gianluca Ascolani, et al.
    Published: (2023-03-01)
  • SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples
    by: Lorenzo Mella, et al.
    Published: (2022-09-01)
  • An Optimal Control Framework for the Automated Design of Personalized Cancer Treatments
    by: Fabrizio Angaroni, et al.
    Published: (2020-05-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs