The Efficacy and Safety of Polyethylene Glycol Cholesterol- and Tocopherol Polyethylene Glycol 1000 Succinate-Modified Transforming Growth Factor β1 Small Interfering RNA Lipid Nanoparticles in the Treatment of Paclitaxel-Resistant Non-Small-Cell Lung Cancer

The aim of this study was to explore the efficacy and safety of TGFβ1 siRNA lipid nanoparticles (LNPs) modified with different PEG derivatives (PEG5000 cholesterol, abbreviated as CE; tocopherol polyethylene glycol 1000 succinate, abbreviated as TPGS) in the treatment of paclitaxel-resistant non-sma...

Full description

Bibliographic Details
Main Authors: Zhaowu Zeng, Xianglong Zeng, Xinyi Li, Yuxin Feng, Yue Kan, Xingyan Liu, Yiying Zeng
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/16/1/75
Description
Summary:The aim of this study was to explore the efficacy and safety of TGFβ1 siRNA lipid nanoparticles (LNPs) modified with different PEG derivatives (PEG5000 cholesterol, abbreviated as CE; tocopherol polyethylene glycol 1000 succinate, abbreviated as TPGS) in the treatment of paclitaxel-resistant non-small-cell lung cancer. Three kinds of TGFβ1 siRNA LNPs were prepared via microfluidics technology, using different PEG derivatives and dosages (CE1.5, CE2.5, TPGS2.5) as variables. Their particle size, zeta potential, contents, and encapsulation efficiencies were determined. The inhibition of TGFβ1 mRNA and protein expression and the effects of the three kinds of LNPs on the proliferation of paclitaxel-resistant non-small-cell lung cancer cells (A549/T cell) were characterized. The distributions of the three siRNA LNPs in nude mice bearing A549/T tumors, especially at the tumor site, were observed using in vivo mouse imaging technology, and their corresponding efficacies were evaluated. The average particle size of the three kinds of TGFβ1 siRNA LNPs was about 70–80 nm, and they were capable of charge flipping. All three siRNA LNPs could effectively inhibit the expression of TGFβ1 mRNA and protein in A549/T cells and inhibit the proliferation of A549/T cells in vitro. The results of in vivo mice imaging showed that the three kinds of siRNA LNPs, when labeled with cypate, retain strong fluorescence in the tumor at 24 h. The pharmacodynamic results, such as for relative tumor volumes and tumor inhibition rates, reveal that TGFβ1 siRNA LNPs modified with CE1.5, CE2.5, or TPGS2.5 can be used to effectively treat paclitaxel-resistant lung adenocarcinoma. The histopathological results showed that the three kinds of LNPs have a certain toxicity but are relatively safe compared to common forms of chemotherapy such as cabazitaxel. TGFβ1 siRNA LNPs modified with CE1.5, CE2.5, and TPGS2.5 can inhibit TGFβ1 mRNA and protein expression in A549/T cells in vitro and can accumulate and play a role in the tumor tissue of nude mice, features that can be exploited for treating paclitaxel-resistant lung adenocarcinoma.
ISSN:1999-4923