On Bhargava rings
Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb{B}_x(D):=\{f\in\nobreak K[X] \text{for all} a\in D, f(xX+a)\in D[X]\}$. In fact, $\mathbb{B}_x(D)$ is a subring of the ring...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Mathematics of the Czech Academy of Science
2023-07-01
|
Series: | Mathematica Bohemica |
Subjects: | |
Online Access: | http://mb.math.cas.cz/full/148/2/mb148_2_3.pdf |