On Bhargava rings

Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb{B}_x(D):=\{f\in\nobreak K[X] \text{for all} a\in D, f(xX+a)\in D[X]\}$. In fact, $\mathbb{B}_x(D)$ is a subring of the ring...

Full description

Bibliographic Details
Main Authors: Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2023-07-01
Series:Mathematica Bohemica
Subjects:
Online Access:http://mb.math.cas.cz/full/148/2/mb148_2_3.pdf