On Bhargava rings
Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb{B}_x(D):=\{f\in\nobreak K[X] \text{for all} a\in D, f(xX+a)\in D[X]\}$. In fact, $\mathbb{B}_x(D)$ is a subring of the ring...
Main Authors: | Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Mathematics of the Czech Academy of Science
2023-07-01
|
Series: | Mathematica Bohemica |
Subjects: | |
Online Access: | http://mb.math.cas.cz/full/148/2/mb148_2_3.pdf |
Similar Items
-
Extension functors of generalized local cohomology modules and Serre subcategories
by: Kamal Bahmanpour
Published: (2022-03-01) -
Olonomia dei moduli semplici su certe algebre di operatori differenziali
by: G. BRATTI
Published: (1994-03-01) -
Some results on gorenstein flat (gorenstein cotorsion) dimensions of modules over group rings
by: Ali Hajizamani
Published: (2022-11-01) -
On α-almost Artinian modules
by: Davoudian Maryam, et al.
Published: (2016-01-01) -
Extend Nearly Pseudo Quasi-2-Absorbing Submodules (II)
by: Omar A. Abdullah, et al.
Published: (2023-04-01)