A Semi-Supervised Fault Diagnosis Method Based on Improved Bidirectional Generative Adversarial Network
With the assumption of sufficient labeled data, deep learning based machinery fault diagnosis methods show effectiveness. However, in real-industrial scenarios, it is costly to label the data, and unlabeled data is underutilized. Therefore, this paper proposes a semi-supervised fault diagnosis metho...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/20/9401 |