Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source
In this article, the particle irradiation effect of a lightly doped Gaussian source heterostructure junctionless tunnel field-effect transistor (DMG-GDS-HJLTFET) is discussed. In the irradiation phenomenon, heavy ion produces a series of electron-hole pairs along the incident track, and then the gen...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/14/7/1413 |
_version_ | 1797588245984313344 |
---|---|
author | Haiwu Xie Hongxia Liu |
author_facet | Haiwu Xie Hongxia Liu |
author_sort | Haiwu Xie |
collection | DOAJ |
description | In this article, the particle irradiation effect of a lightly doped Gaussian source heterostructure junctionless tunnel field-effect transistor (DMG-GDS-HJLTFET) is discussed. In the irradiation phenomenon, heavy ion produces a series of electron-hole pairs along the incident track, and then the generated transient current can overturn the logical state of the device when the number of electron-hole pairs is large enough. In the single-particle effect of DMG-GDS-HJLTFET, the carried energy is usually represented by linear energy transfer value (LET). In simulation, the effects of incident ion energy, incident angle, incident completion time, incident position and drain bias voltage on the single-particle effect of DMG-GDS-HJLTFET are investigated. On this basis, we optimize the auxiliary gate dielectric, tunneling gate length for reliability. Simulation results show HfO<sub>2</sub> with a large dielectric constant should be selected as the auxiliary gate dielectric in the anti-irradiation design. Larger tunneling gate leads to larger peak transient drain current and smaller tunneling gate means larger pulse width; from the point of anti-irradiation, the tunneling gate length should be selected at about 10 nm. |
first_indexed | 2024-03-11T00:49:25Z |
format | Article |
id | doaj.art-fa77a87e42024c1ebb4192e1bf94f491 |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-03-11T00:49:25Z |
publishDate | 2023-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-fa77a87e42024c1ebb4192e1bf94f4912023-11-18T20:33:05ZengMDPI AGMicromachines2072-666X2023-07-01147141310.3390/mi14071413Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped SourceHaiwu Xie0Hongxia Liu1Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi’an 710071, ChinaKey Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi’an 710071, ChinaIn this article, the particle irradiation effect of a lightly doped Gaussian source heterostructure junctionless tunnel field-effect transistor (DMG-GDS-HJLTFET) is discussed. In the irradiation phenomenon, heavy ion produces a series of electron-hole pairs along the incident track, and then the generated transient current can overturn the logical state of the device when the number of electron-hole pairs is large enough. In the single-particle effect of DMG-GDS-HJLTFET, the carried energy is usually represented by linear energy transfer value (LET). In simulation, the effects of incident ion energy, incident angle, incident completion time, incident position and drain bias voltage on the single-particle effect of DMG-GDS-HJLTFET are investigated. On this basis, we optimize the auxiliary gate dielectric, tunneling gate length for reliability. Simulation results show HfO<sub>2</sub> with a large dielectric constant should be selected as the auxiliary gate dielectric in the anti-irradiation design. Larger tunneling gate leads to larger peak transient drain current and smaller tunneling gate means larger pulse width; from the point of anti-irradiation, the tunneling gate length should be selected at about 10 nm.https://www.mdpi.com/2072-666X/14/7/1413band-to-band tunneling (BTBT)linear energy transfer value (LET)single-particle irradiation effectanti-irradiation optimization |
spellingShingle | Haiwu Xie Hongxia Liu Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source Micromachines band-to-band tunneling (BTBT) linear energy transfer value (LET) single-particle irradiation effect anti-irradiation optimization |
title | Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source |
title_full | Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source |
title_fullStr | Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source |
title_full_unstemmed | Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source |
title_short | Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source |
title_sort | single particle irradiation effect and anti irradiation optimization of a jltfet with lightly doped source |
topic | band-to-band tunneling (BTBT) linear energy transfer value (LET) single-particle irradiation effect anti-irradiation optimization |
url | https://www.mdpi.com/2072-666X/14/7/1413 |
work_keys_str_mv | AT haiwuxie singleparticleirradiationeffectandantiirradiationoptimizationofajltfetwithlightlydopedsource AT hongxialiu singleparticleirradiationeffectandantiirradiationoptimizationofajltfetwithlightlydopedsource |