TRNT-1 Deficiency Is Associated with Loss of tRNA Integrity and Imbalance of Distinct Proteins

Mitochondrial diseases are a group of heterogeneous disorders caused by dysfunctional mitochondria. Interestingly, a large proportion of mitochondrial diseases are caused by defects in genes associated with tRNA metabolism. We recently discovered that partial loss-of-function mutations in tRNA Nucle...

Full description

Bibliographic Details
Main Authors: Thet Fatica, Turaya Naas, Urszula Liwak, Hannah Slaa, Maryam Souaid, Brianna Frangione, Ribal Kattini, Antoine Gaudreau-Lapierre, Laura Trinkle-Mulcahy, Pranesh Chakraborty, Martin Holcik
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/14/5/1043
Description
Summary:Mitochondrial diseases are a group of heterogeneous disorders caused by dysfunctional mitochondria. Interestingly, a large proportion of mitochondrial diseases are caused by defects in genes associated with tRNA metabolism. We recently discovered that partial loss-of-function mutations in tRNA Nucleotidyl Transferase 1 (<i>TRNT1</i>), the nuclear gene encoding the CCA-adding enzyme essential for modifying both nuclear and mitochondrial tRNAs, causes a multisystemic and clinically heterogenous disease termed SIFD (sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay; SIFD). However, it is not clear how mutations in a general and essential protein like TRNT1 cause disease with such clinically broad but unique symptomatology and tissue involvement. Using biochemical, cell, and mass spectrometry approaches, we demonstrate that <i>TRNT1</i> deficiency is associated with sensitivity to oxidative stress, which is due to exacerbated, angiogenin-dependent cleavage of tRNAs. Furthermore, reduced levels of TRNT1 lead to phosphorylation of Eukaryotic Translation Initiation Factor 2 Subunit Alpha (eIF2α), increased reactive oxygen species (ROS) production, and changes in the abundance of distinct proteins. Our data suggest that the observed variable SIFD phenotypes are likely due to dysregulation of tRNA maturation and abundance, which in turn negatively affects the translation of distinct proteins.
ISSN:2073-4425