SymCHM—An Unsupervised Approach for Pattern Discovery in Symbolic Music with a Compositional Hierarchical Model

This paper presents a compositional hierarchical model for pattern discovery in symbolic music. The model can be regarded as a deep architecture with a transparent structure. It can learn a set of repeated patterns within individual works or larger corpora in an unsupervised manner, relying on stati...

Full description

Bibliographic Details
Main Authors: Matevž Pesek, Aleš Leonardis, Matija Marolt
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/7/11/1135