Mitochondria in Huntington’s disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies

Huntington’s disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative st...

Full description

Bibliographic Details
Main Authors: Anamaria Jurcau, Carolina Maria Jurcau
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2023-01-01
Series:Neural Regeneration Research
Subjects:
Online Access:http://www.nrronline.org/article.asp?issn=1673-5374;year=2023;volume=18;issue=7;spage=1472;epage=1477;aulast=Jurcau
Description
Summary:Huntington’s disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington’s disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
ISSN:1673-5374