Mutation of GGMP Repeat Segments of <i>Plasmodium falciparum</i> Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding

Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp...

Full description

Bibliographic Details
Main Authors: Stanley Makumire, Tendamudzimu Harmfree Dongola, Graham Chakafana, Lufuno Tshikonwane, Cecilia Tshikani Chauke, Tarushai Maharaj, Tawanda Zininga, Addmore Shonhai
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/4/2226
Description
Summary:Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of <i>Plasmodium falciparum</i> (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of <i>E. coli</i> DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using <i>E. coli dnaK756</i> cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in <i>E. coli dnaK756</i> cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.
ISSN:1661-6596
1422-0067