Suppression of mosaic mutation by co-delivery of CRISPR associated protein 9 and three-prime repair exonuclease 2 into porcine zygotes via electroporation

Gene-modified animals, including pigs, can be generated efficiently by introducing CRISPR associated protein 9 (CRISPR/Cas9) into zygotes. However, in many cases, these zygotes tend to become mosaic mutants with various different mutant cell types, making it difficult to analyze the phenotype of gen...

Full description

Bibliographic Details
Main Authors: Shiro YAMASHITA, Yuhei KOGASAKA, Yuuki HIRADATE, Kentaro TANEMURA, Yutaka SENDAI
Format: Article
Language:English
Published: The Society for Reproduction and Development 2019-11-01
Series:The Journal of Reproduction and Development
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/jrd/66/1/66_2019-088/_pdf/-char/en
Description
Summary:Gene-modified animals, including pigs, can be generated efficiently by introducing CRISPR associated protein 9 (CRISPR/Cas9) into zygotes. However, in many cases, these zygotes tend to become mosaic mutants with various different mutant cell types, making it difficult to analyze the phenotype of gene-modified founder animals. To reduce the mosaic mutations, we introduced three-prime repair exonuclease 2 (Trex2), an exonuclease that improves gene editing efficiency, into porcine zygotes along with CRISPR/Cas9 via electroporation. Although the rate of porcine blastocyst formation decreased due to electroporation (25.9 ± 4.6% vs. 41.2 ± 2.0%), co-delivery of murine Trex2 (mTrex2) mRNA with CRISPR/Cas9 did not affect it any further (25.9 ± 4.6% vs. 31.0 ± 4.6%). In addition, there was no significant difference in the diameter of blastocysts carrying CRISPR/Cas9 (164.7 ± 10.2 μm), and those with CRISPR/Cas9 + mTrex2 (151.9 ± 5.1 μm) as compared to those from the control group (178.9 ± 9.0 μm). These results revealed that mTrex2 did not affect the development of pre-implantation embryo. We also found bi-allelic, as well as mono-allelic, non-mosaic homozygous mutations in the blastocysts. Most importantly, co-delivery of mTrex2 mRNA with CRISPR/Cas9 increased non-mosaic mutant blastocysts (29.3 ± 4.5%) and reduced mosaic mutant blastocysts (70.7 ± 4.5%) as compared to CRISPR/Cas9 alone (5.6 ± 6.4% and 92.6 ± 8.6%, respectively). These data suggest that the co-delivery of CRISPR/Cas9 and mTrex2 is a useful method to suppress mosaic mutation.
ISSN:0916-8818
1348-4400