Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile

We use 3D k -means clustering to characterize galaxy substructure in the A2146 cluster of galaxies ( z = 0.2343). This method objectively characterizes the cluster’s substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster...

Descrizione completa

Dettagli Bibliografici
Autori principali: Mark J. Henriksen, Prajwal Panda
Natura: Articolo
Lingua:English
Pubblicazione: IOP Publishing 2024-01-01
Serie:The Astrophysical Journal Letters
Soggetti:
Accesso online:https://doi.org/10.3847/2041-8213/ad1ede

Documenti analoghi