A generalized Weyl structure with arbitrary non-metricity
Abstract A Weyl structure is usually defined by an equivalence class of pairs $$(\mathbf{g}, {\varvec{\omega }})$$ (g,ω) related by Weyl transformations, which preserve the relation $$\nabla \mathbf{g}={\varvec{\omega }}\otimes \mathbf{g}$$ ∇g=ω⊗g , where $$\mathbf{g}$$ g and $${\varvec{\omega }}$$...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-10-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-019-7394-z |