Class-Wise Adaptive Strategy for Semi Supervised Semantic Segmentation
Semi-supervised semantic segmentation learns a model for classifying pixels into specific classes using a few labeled samples and numerous unlabeled images. The recent leading approach is consistency regularization by self-training with pseudo-labeling pixels having high confidences for unlabeled im...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10423647/ |