Infinite semipositone problems with a falling zero and nonlinear boundary conditions
We consider the problem $$\displaylines{ -u'' =h(t)\big(\frac{au-u^{2}-c}{u^\alpha}\big) , \quad t \in (0, 1),\cr u(0) = 0, \quad u'(1)+g(u(1))=0, }$$ where $a>0$, $c\geq 0$, $\alpha \in (0, 1)$, $h{:}(0, 1] \to (0, \infty)$ is a continuous function which may be singular at...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2018-11-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2018/193/abstr.html |