Infinite semipositone problems with a falling zero and nonlinear boundary conditions

We consider the problem $$\displaylines{ -u'' =h(t)\big(\frac{au-u^{2}-c}{u^\alpha}\big) , \quad t \in (0, 1),\cr u(0) = 0, \quad u'(1)+g(u(1))=0, }$$ where $a>0$, $c\geq 0$, $\alpha \in (0, 1)$, $h{:}(0, 1] \to (0, \infty)$ is a continuous function which may be singular at...

Full description

Bibliographic Details
Main Authors: Mohan Mallick, Lakshmi Sankar, Ratnasingham Shivaji, Subbiah Sundar
Format: Article
Language:English
Published: Texas State University 2018-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/193/abstr.html
_version_ 1818067668582793216
author Mohan Mallick
Lakshmi Sankar
Ratnasingham Shivaji
Subbiah Sundar
author_facet Mohan Mallick
Lakshmi Sankar
Ratnasingham Shivaji
Subbiah Sundar
author_sort Mohan Mallick
collection DOAJ
description We consider the problem $$\displaylines{ -u'' =h(t)\big(\frac{au-u^{2}-c}{u^\alpha}\big) , \quad t \in (0, 1),\cr u(0) = 0, \quad u'(1)+g(u(1))=0, }$$ where $a>0$, $c\geq 0$, $\alpha \in (0, 1)$, $h{:}(0, 1] \to (0, \infty)$ is a continuous function which may be singular at $t=0$, but belongs to $L^1(0, 1)\cap C^1(0,1)$, and $g{:}[0, \infty) \to [0, \infty)$ is a continuous function. We discuss existence, uniqueness, and non existence results for positive solutions for certain values of a, b and c.
first_indexed 2024-12-10T15:27:20Z
format Article
id doaj.art-fd9881c34dc44a7cb51a41dea5827939
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-10T15:27:20Z
publishDate 2018-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-fd9881c34dc44a7cb51a41dea58279392022-12-22T01:43:30ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912018-11-012018193,113Infinite semipositone problems with a falling zero and nonlinear boundary conditionsMohan Mallick0Lakshmi Sankar1Ratnasingham Shivaji2Subbiah Sundar3 IIT Madras, Chennai, India Univ. of North Carolina, Greensboro, NC, USA IIT Madras, Chennai, India We consider the problem $$\displaylines{ -u'' =h(t)\big(\frac{au-u^{2}-c}{u^\alpha}\big) , \quad t \in (0, 1),\cr u(0) = 0, \quad u'(1)+g(u(1))=0, }$$ where $a>0$, $c\geq 0$, $\alpha \in (0, 1)$, $h{:}(0, 1] \to (0, \infty)$ is a continuous function which may be singular at $t=0$, but belongs to $L^1(0, 1)\cap C^1(0,1)$, and $g{:}[0, \infty) \to [0, \infty)$ is a continuous function. We discuss existence, uniqueness, and non existence results for positive solutions for certain values of a, b and c.http://ejde.math.txstate.edu/Volumes/2018/193/abstr.htmlInfinite semipostioneexterior domainsub and super solutionsnonlinear boundary conditions
spellingShingle Mohan Mallick
Lakshmi Sankar
Ratnasingham Shivaji
Subbiah Sundar
Infinite semipositone problems with a falling zero and nonlinear boundary conditions
Electronic Journal of Differential Equations
Infinite semipostione
exterior domain
sub and super solutions
nonlinear boundary conditions
title Infinite semipositone problems with a falling zero and nonlinear boundary conditions
title_full Infinite semipositone problems with a falling zero and nonlinear boundary conditions
title_fullStr Infinite semipositone problems with a falling zero and nonlinear boundary conditions
title_full_unstemmed Infinite semipositone problems with a falling zero and nonlinear boundary conditions
title_short Infinite semipositone problems with a falling zero and nonlinear boundary conditions
title_sort infinite semipositone problems with a falling zero and nonlinear boundary conditions
topic Infinite semipostione
exterior domain
sub and super solutions
nonlinear boundary conditions
url http://ejde.math.txstate.edu/Volumes/2018/193/abstr.html
work_keys_str_mv AT mohanmallick infinitesemipositoneproblemswithafallingzeroandnonlinearboundaryconditions
AT lakshmisankar infinitesemipositoneproblemswithafallingzeroandnonlinearboundaryconditions
AT ratnasinghamshivaji infinitesemipositoneproblemswithafallingzeroandnonlinearboundaryconditions
AT subbiahsundar infinitesemipositoneproblemswithafallingzeroandnonlinearboundaryconditions