An upper bound for solutions of the Lebesgue-Nagell equation x 2 + a 2 = y n $x^{2}+a^{2}=y^{n}$
Abstract Let a be a positive integer with a > 1 $a>1$ , and let ( x , y , n ) $(x, y, n)$ be a positive integer solution of the equation x 2 + a 2 = y n $x^{2}+a^{2}=y^{n}$ , gcd ( x , y ) = 1 $\gcd(x, y)=1$ , n > 2 $n>2$ . Using Baker’s method, we prove that, for any positive number ϵ,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-09-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-1154-5 |