An upper bound for solutions of the Lebesgue-Nagell equation x 2 + a 2 = y n $x^{2}+a^{2}=y^{n}$

Abstract Let a be a positive integer with a > 1 $a>1$ , and let ( x , y , n ) $(x, y, n)$ be a positive integer solution of the equation x 2 + a 2 = y n $x^{2}+a^{2}=y^{n}$ , gcd ( x , y ) = 1 $\gcd(x, y)=1$ , n > 2 $n>2$ . Using Baker’s method, we prove that, for any positive number ϵ,...

Full description

Bibliographic Details
Main Author: Xiaowei Pan
Format: Article
Language:English
Published: SpringerOpen 2016-09-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1154-5