Green function and Fourier transform for o-plus operators
In this article, we study the o-plus operator defined by $$ oplus^k =Big(Big(sum^{p}_{i=1}frac{partial^2}{partial x^2_i}Big)^{4}-Big(sum^{p+q}_{j=p+1}frac{partial^2}{partial x^2_j}Big)^{4}Big)^k , $$ where $x=(x_1,x_2,dots,x_n)in mathbb{R}^n$, $p+q=n$, and $k$ is a nonnegative integer. Firstl...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2010-04-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2010/48/abstr.html |