Assessing the Suitability of Boosting Machine-Learning Algorithms for Classifying Arsenic-Contaminated Waters: A Novel Model-Explainable Approach Using SHapley Additive exPlanations

There is growing tension between high-performance machine-learning (ML) models and explainability within the scientific community. In arsenic modelling, understanding why ML models make certain predictions, for instance, “high arsenic” instead of “low arsenic”, is as important as the prediction accu...

Full description

Bibliographic Details
Main Authors: Bemah Ibrahim, Anthony Ewusi, Isaac Ahenkorah
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/14/21/3509