Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2021-08-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2021-0060 |