Cholecystokinin type B receptor-mediated inhibition of A-type K+ channels enhances sensory neuronal excitability through the phosphatidylinositol 3-kinase and c-Src-dependent JNK pathway

Abstract Background Cholecystokinin (CCK) is implicated in the regulation of nociceptive sensitivity of primary afferent neurons. Nevertheless, the underlying cellular and molecular mechanisms remain unknown. Methods Using patch clamp recording, western blot analysis, immunofluorescent labelling, en...

Full description

Bibliographic Details
Main Authors: Shumin Yu, Yuan Zhang, Xianyang Zhao, Zhigang Chang, Yuan Wei, Yufang Sun, Dongsheng Jiang, Xinghong Jiang, Jin Tao
Format: Article
Language:English
Published: BMC 2019-06-01
Series:Cell Communication and Signaling
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12964-019-0385-8
Description
Summary:Abstract Background Cholecystokinin (CCK) is implicated in the regulation of nociceptive sensitivity of primary afferent neurons. Nevertheless, the underlying cellular and molecular mechanisms remain unknown. Methods Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of CCK-8 on the sensory neuronal excitability and peripheral pain sensitivity mediated by A-type K+ channels. Results CCK-8 reversibly and concentration-dependently decreased A-type K+ channel (I A) in small-sized dorsal root ganglion (DRG) neurons through the activation of CCK type B receptor (CCK-BR), while the sustained delayed rectifier K+ current was unaffected. The intracellular subunit of CCK-BR coimmunoprecipitated with Gαo. Blocking G-protein signaling with pertussis toxin or by the intracellular application of anti-Gβ antibody reversed the inhibitory effects of CCK-8. Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its common downstream target Akts abolished the CCK-BR-mediated I A response. CCK-8 application significantly activated JNK mitogen-activated protein kinase. Antagonism of either JNK or c-Src prevented the CCK-BR-mediated I A decrease, whereas c-Src inhibition attenuated the CCK-8-induced p-JNK activation. Application of CCK-8 enhanced the action potential firing rate of DRG neurons and elicited mechanical and thermal pain hypersensitivity in mice. These effects were mediated by CCK-BR and were occluded by I A blockade. Conclusion Our findings indicate that CCK-8 attenuated I A through CCK-BR that is coupled to the Gβγ-dependent PI3K and c-Src-mediated JNK pathways, thereby enhancing the sensory neuronal excitability in DRG neurons and peripheral pain sensitivity in mice.
ISSN:1478-811X