Comparison of Matrix Decomposition in Null Space-Based LDA Method

Problems with small sample sizes and high dimensionality are common in pattern recognition. Almost all machine learning algorithms degrade in high-dimensional data, so that singularities in the scatter matrices, the main problem of the Linear Discriminant Analysis (LDA) technique, might result. A nu...

詳細記述

書誌詳細
主要な著者: Carissa Devina Usman, Farikhin, Titi Udjiani
フォーマット: 論文
言語:English
出版事項: Ikatan Ahli Informatika Indonesia 2024-06-01
シリーズ:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
主題:
オンライン・アクセス:https://jurnal.iaii.or.id/index.php/RESTI/article/view/5637