Deep Convolutional Networks are Hierarchical Kernel Machines

We extend i-theory to incorporate not only pooling but also rectifying nonlinearities in an extended HW module (eHW) designed for supervised learning. The two operations roughly correspond to invariance and selectivity, respectively. Under the assumption of normalized inputs, we show that appropriat...

Full description

Bibliographic Details
Main Authors: Anselmi, Fabio, Rosasco, Lorenzo, Tan, Cheston, Poggio, Tomaso
Format: Technical Report
Language:en_US
Published: Center for Brains, Minds and Machines (CBMM), arXiv 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/100200