Learning Real and Boolean Functions: When Is Deep Better Than Shallow
We describe computational tasks - especially in vision - that correspond to compositional/hierarchical functions. While the universal approximation property holds both for hierarchical and shallow networks, we prove that deep (hierarchical) networks can approximate the class of compositional functio...
Principais autores: | , , |
---|---|
Formato: | Technical Report |
Idioma: | en_US |
Publicado em: |
Center for Brains, Minds and Machines (CBMM), arXiv
2016
|
Assuntos: | |
Acesso em linha: | http://hdl.handle.net/1721.1/101635 |