Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
We discuss relations between Residual Networks (ResNet), Recurrent Neural Networks (RNNs) and the primate visual cortex. We begin with the observation that a shallow RNN is exactly equivalent to a very deep ResNet with weight sharing among the layers. A direct implementation of such a RNN, although...
Main Authors: | , |
---|---|
Format: | Technical Report |
Language: | en_US |
Published: |
Center for Brains, Minds and Machines (CBMM), arXiv
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/102238 |