Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex

We discuss relations between Residual Networks (ResNet), Recurrent Neural Networks (RNNs) and the primate visual cortex. We begin with the observation that a shallow RNN is exactly equivalent to a very deep ResNet with weight sharing among the layers. A direct implementation of such a RNN, although...

Full description

Bibliographic Details
Main Authors: Liao, Qianli, Poggio, Tomaso
Format: Technical Report
Language:en_US
Published: Center for Brains, Minds and Machines (CBMM), arXiv 2016
Subjects:
Online Access:http://hdl.handle.net/1721.1/102238