The schizophrenia risk gene product miR-137 alters presynaptic plasticity

Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorph...

Full description

Bibliographic Details
Main Authors: Siegert, Sandra, Seo, Jinsoo, Kwon, Ester, Rudenko, Andrii, Cho, Sukhee, Wang, Wenyuan, Flood, Zachary, Martorell, Anthony, Ericsson, Maria, Mungenast, Alison, Tsai, Li-Huei
Other Authors: Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Format: Article
Language:en_US
Published: Nature Publishing Group 2016
Online Access:http://hdl.handle.net/1721.1/102680
https://orcid.org/0000-0002-2206-2590
https://orcid.org/0000-0003-1262-0592
https://orcid.org/0000-0001-8635-0877
https://orcid.org/0000-0002-6335-9681
_version_ 1826192472436375552
author Siegert, Sandra
Seo, Jinsoo
Kwon, Ester
Rudenko, Andrii
Cho, Sukhee
Wang, Wenyuan
Flood, Zachary
Martorell, Anthony
Ericsson, Maria
Mungenast, Alison
Tsai, Li-Huei
author2 Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
author_facet Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Siegert, Sandra
Seo, Jinsoo
Kwon, Ester
Rudenko, Andrii
Cho, Sukhee
Wang, Wenyuan
Flood, Zachary
Martorell, Anthony
Ericsson, Maria
Mungenast, Alison
Tsai, Li-Huei
author_sort Siegert, Sandra
collection MIT
description Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele–carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus.
first_indexed 2024-09-23T09:15:20Z
format Article
id mit-1721.1/102680
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T09:15:20Z
publishDate 2016
publisher Nature Publishing Group
record_format dspace
spelling mit-1721.1/1026802022-09-26T11:08:40Z The schizophrenia risk gene product miR-137 alters presynaptic plasticity Siegert, Sandra Seo, Jinsoo Kwon, Ester Rudenko, Andrii Cho, Sukhee Wang, Wenyuan Flood, Zachary Martorell, Anthony Ericsson, Maria Mungenast, Alison Tsai, Li-Huei Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences Picower Institute for Learning and Memory Siegert, Sandra Seo, Jinsoo Kwon, Ester Rudenko, Andrii Cho, Sukhee Wang, Wenyuan Flood, Zachary Martorell, Anthony Mungenast, Alison Tsai, Li-Huei Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele–carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus. 2016-05-25T17:44:04Z 2016-05-25T17:44:04Z 2015-05 2015-02 Article http://purl.org/eprint/type/JournalArticle 1097-6256 1546-1726 http://hdl.handle.net/1721.1/102680 Siegert, Sandra, Jinsoo Seo, Ester J Kwon, Andrii Rudenko, Sukhee Cho, Wenyuan Wang, Zachary Flood, et al. “The Schizophrenia Risk Gene Product miR-137 Alters Presynaptic Plasticity.” Nat Neurosci 18, no. 7 (May 25, 2015): 1008–1016. https://orcid.org/0000-0002-2206-2590 https://orcid.org/0000-0003-1262-0592 https://orcid.org/0000-0001-8635-0877 https://orcid.org/0000-0002-6335-9681 en_US http://dx.doi.org/10.1038/nn.4023 Nature Neuroscience Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Nature Publishing Group PMC
spellingShingle Siegert, Sandra
Seo, Jinsoo
Kwon, Ester
Rudenko, Andrii
Cho, Sukhee
Wang, Wenyuan
Flood, Zachary
Martorell, Anthony
Ericsson, Maria
Mungenast, Alison
Tsai, Li-Huei
The schizophrenia risk gene product miR-137 alters presynaptic plasticity
title The schizophrenia risk gene product miR-137 alters presynaptic plasticity
title_full The schizophrenia risk gene product miR-137 alters presynaptic plasticity
title_fullStr The schizophrenia risk gene product miR-137 alters presynaptic plasticity
title_full_unstemmed The schizophrenia risk gene product miR-137 alters presynaptic plasticity
title_short The schizophrenia risk gene product miR-137 alters presynaptic plasticity
title_sort schizophrenia risk gene product mir 137 alters presynaptic plasticity
url http://hdl.handle.net/1721.1/102680
https://orcid.org/0000-0002-2206-2590
https://orcid.org/0000-0003-1262-0592
https://orcid.org/0000-0001-8635-0877
https://orcid.org/0000-0002-6335-9681
work_keys_str_mv AT siegertsandra theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT seojinsoo theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT kwonester theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT rudenkoandrii theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT chosukhee theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT wangwenyuan theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT floodzachary theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT martorellanthony theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT ericssonmaria theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT mungenastalison theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT tsailihuei theschizophreniariskgeneproductmir137alterspresynapticplasticity
AT siegertsandra schizophreniariskgeneproductmir137alterspresynapticplasticity
AT seojinsoo schizophreniariskgeneproductmir137alterspresynapticplasticity
AT kwonester schizophreniariskgeneproductmir137alterspresynapticplasticity
AT rudenkoandrii schizophreniariskgeneproductmir137alterspresynapticplasticity
AT chosukhee schizophreniariskgeneproductmir137alterspresynapticplasticity
AT wangwenyuan schizophreniariskgeneproductmir137alterspresynapticplasticity
AT floodzachary schizophreniariskgeneproductmir137alterspresynapticplasticity
AT martorellanthony schizophreniariskgeneproductmir137alterspresynapticplasticity
AT ericssonmaria schizophreniariskgeneproductmir137alterspresynapticplasticity
AT mungenastalison schizophreniariskgeneproductmir137alterspresynapticplasticity
AT tsailihuei schizophreniariskgeneproductmir137alterspresynapticplasticity