Minimization of Macrosegregation in DC Cast Ingots Through Jet Processing

With an increase in demand for aluminum alloys, industrial suppliers are seeking to increase the size and speed of casting processes. Unfortunately operating the existing Direct-Chill (DC) process in such conditions tends to enhance metallurgical defects. Perhaps the most recognized of these defects...

Full description

Bibliographic Details
Main Authors: Wagstaff, Samuel Robert, Allanore, Antoine
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: Springer US 2016
Online Access:http://hdl.handle.net/1721.1/105503
https://orcid.org/0000-0002-5334-8129
https://orcid.org/0000-0002-2594-0264
Description
Summary:With an increase in demand for aluminum alloys, industrial suppliers are seeking to increase the size and speed of casting processes. Unfortunately operating the existing Direct-Chill (DC) process in such conditions tends to enhance metallurgical defects. Perhaps the most recognized of these defects is macrosegregation, whose effects are permanent once the material is solidified. In order to facilitate the expansion of the DC process without increasing the presence of macrosegregation, a novel jet mixing method to distribute the liquid metal is presented. The governing equations for this process are derived and the operating parameters necessary to minimize the centerline macrosegregation are predicted. The results of commercial-scale tests are presented, validating the predictive equations and performance of this process.