A convex relaxation for approximate global optimization in simultaneous localization and mapping
Modern approaches to simultaneous localization and mapping (SLAM) formulate the inference problem as a high-dimensional but sparse nonconvex M-estimation, and then apply general first- or second-order smooth optimization methods to recover a local minimizer of the objective function. The performance...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2017
|
Online Access: | http://hdl.handle.net/1721.1/107496 https://orcid.org/0000-0001-8964-1602 https://orcid.org/0000-0002-8863-6550 |