A convex relaxation for approximate global optimization in simultaneous localization and mapping
Modern approaches to simultaneous localization and mapping (SLAM) formulate the inference problem as a high-dimensional but sparse nonconvex M-estimation, and then apply general first- or second-order smooth optimization methods to recover a local minimizer of the objective function. The performance...
Principais autores: | DuHadway, Charles, Rosen, David Matthew, Leonard, John J |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Formato: | Artigo |
Idioma: | en_US |
Publicado em: |
Institute of Electrical and Electronics Engineers (IEEE)
2017
|
Acesso em linha: | http://hdl.handle.net/1721.1/107496 https://orcid.org/0000-0001-8964-1602 https://orcid.org/0000-0002-8863-6550 |
Registros relacionados
-
An analysis of convex relaxations for MAP estimation
por: Kumar, MP, et al.
Publicado em: (2008) -
Analyzing convex relaxations for map estimation
por: Kumar, MP, et al.
Publicado em: (2011) -
Efficiently solving convex relaxations for MAP estimation
por: Kumar, MP, et al.
Publicado em: (2008) -
Fixed points and their approximations for asymptotically nonexpansive mappings in locally convex spaces
por: P. Vijayaraju
Publicado em: (1995-01-01) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
por: Pawan Kumar, M, et al.
Publicado em: (2009)