Theory II: Landscape of the Empirical Risk in Deep Learning

Previous theoretical work on deep learning and neural network optimization tend to focus on avoiding saddle points and local minima. However, the practical observation is that, at least for the most successful Deep Convolutional Neural Networks (DCNNs) for visual processing, practitioners can always...

ver descrição completa

Detalhes bibliográficos
Principais autores: Poggio, Tomaso, Liao, Qianli
Formato: Technical Report
Idioma:en_US
Publicado em: Center for Brains, Minds and Machines (CBMM), arXiv 2017
Assuntos:
Acesso em linha:http://hdl.handle.net/1721.1/107787