On the Robustness of Convolutional Neural Networks to Internal Architecture and Weight Perturbations
Deep convolutional neural networks are generally regarded as robust function approximators. So far, this intuition is based on perturbations to external stimuli such as the images to be classified. Here we explore the robustness of convolutional neural networks to perturbations to the internal weigh...
Main Authors: | , , |
---|---|
Format: | Technical Report |
Language: | en_US |
Published: |
Center for Brains, Minds and Machines (CBMM), arXiv
2017
|
Online Access: | http://hdl.handle.net/1721.1/107935 |