Linnik’s theorem for Sato-Tate laws on elliptic curves with complex multiplication

Let E/ℚ be an elliptic curve with complex multiplication (CM), and for each prime p of good reduction, let a[subscript E](p) = p + 1 − #E(𝔽[subscript p]) denote the trace of Frobenius. By the Hasse bound, a[subscript E] (p) = 2 √pcosθ[subscript p] for a unique θ[subscript p] ∈ [0,π]. In this pape...

Ful tanımlama

Detaylı Bibliyografya
Asıl Yazarlar: Park, Peter S., Swaminathan, Ashvin A., Chen, Evan
Diğer Yazarlar: Massachusetts Institute of Technology. Department of Mathematics
Materyal Türü: Makale
Dil:English
Baskı/Yayın Bilgisi: Springer International Publishing 2017
Online Erişim:http://hdl.handle.net/1721.1/109820