Linnik’s theorem for Sato-Tate laws on elliptic curves with complex multiplication
Let E/ℚ be an elliptic curve with complex multiplication (CM), and for each prime p of good reduction, let a[subscript E](p) = p + 1 − #E(𝔽[subscript p]) denote the trace of Frobenius. By the Hasse bound, a[subscript E] (p) = 2 √pcosθ[subscript p] for a unique θ[subscript p] ∈ [0,π]. In this pape...
Asıl Yazarlar: | , , |
---|---|
Diğer Yazarlar: | |
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer International Publishing
2017
|
Online Erişim: | http://hdl.handle.net/1721.1/109820 |