Sidorenko's conjecture, colorings and independent sets
Let hom(H, G) denote the number of homomorphisms from a graph H to a graph G. Sidorenko’s conjecture asserts that for any bipartite graph H, and a graph G we have hom(H, G) > v(G)[superscript v(H)](hom(K[subscript 2], G)[superscript e(H)]/v(G)[superscript 2], where v(H), v(G) and e(H), e(G) deno...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
European Mathematical Information Service (EMIS)
2017
|
Online Access: | http://hdl.handle.net/1721.1/110146 https://orcid.org/0000-0002-1594-9206 |