Computational hair quality categorization in lower magnifications

We take advantage of human hair specific geometry to visualize sparse submicron cuticle peelings with highly oblique tip-side illumination. We show that the statistics of these features can directly estimate hair quality in much lower magnifications (down to 20x) with less powerful objectives when t...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Heshmat Dehkordi, Barmak, Ikoma, Hayato, Lee, Ik Hyun, Rastogi, Krishna, Raskar, Ramesh
Muut tekijät: Massachusetts Institute of Technology. Media Laboratory
Aineistotyyppi: Artikkeli
Kieli:en_US
Julkaistu: Institute of Electrical and Electronics Engineers (IEEE) 2017
Linkit:http://hdl.handle.net/1721.1/110721
https://orcid.org/0000-0003-0768-4815
https://orcid.org/0000-0002-3254-3224