Molding CNNs for text: Non-linear, non-consecutive convolutions
The success of deep learning often derives from well-chosen operational building blocks. In this work, we revise the temporal convolution operation in CNNs to better adapt it to text processing. Instead of concatenating word representations, we appeal to tensor algebra and u...
Hauptverfasser: | , , |
---|---|
Weitere Verfasser: | |
Format: | Artikel |
Sprache: | en_US |
Veröffentlicht: |
Association for Computational Linguistics
2017
|
Online Zugang: | http://hdl.handle.net/1721.1/110753 https://orcid.org/0000-0003-4644-3088 https://orcid.org/0000-0002-2921-8201 https://orcid.org/0000-0002-2199-0379 |