Semisimple Hopf actions on Weyl algebras

We study actions of semisimple Hopf algebras H on Weyl algebras A over an algebraically closed field of characteristic zero. We show that the action of H on A must factor through a group action; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include red...

Full description

Bibliographic Details
Main Authors: Cuadra, Juan, Etingof, Pavel I, Walton, Chelsea
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Elsevier 2017
Online Access:http://hdl.handle.net/1721.1/111128
https://orcid.org/0000-0002-0710-1416
_version_ 1826197923409428480
author Cuadra, Juan
Etingof, Pavel I
Walton, Chelsea
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Cuadra, Juan
Etingof, Pavel I
Walton, Chelsea
author_sort Cuadra, Juan
collection MIT
description We study actions of semisimple Hopf algebras H on Weyl algebras A over an algebraically closed field of characteristic zero. We show that the action of H on A must factor through a group action; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras.
first_indexed 2024-09-23T10:55:52Z
format Article
id mit-1721.1/111128
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T10:55:52Z
publishDate 2017
publisher Elsevier
record_format dspace
spelling mit-1721.1/1111282022-10-01T00:02:41Z Semisimple Hopf actions on Weyl algebras Cuadra, Juan Etingof, Pavel I Walton, Chelsea Massachusetts Institute of Technology. Department of Mathematics Etingof, Pavel I Walton, Chelsea We study actions of semisimple Hopf algebras H on Weyl algebras A over an algebraically closed field of characteristic zero. We show that the action of H on A must factor through a group action; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras. National Science Foundation (U.S.) (Grant DMS-1000113) National Science Foundation (U.S.) (Grant DMS-1401207) 2017-09-05T17:57:10Z 2017-09-05T17:57:10Z 2015-06 2015-03 Article http://purl.org/eprint/type/JournalArticle 0001-8708 1090-2082 http://hdl.handle.net/1721.1/111128 Cuadra, Juan et al. “Semisimple Hopf Actions on Weyl Algebras.” Advances in Mathematics 282 (September 2015): 47–55 © 2015 Elsevier Inc https://orcid.org/0000-0002-0710-1416 en_US http://dx.doi.org/10.1016/j.aim.2015.05.014 Advances in Mathematics Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier arXiv
spellingShingle Cuadra, Juan
Etingof, Pavel I
Walton, Chelsea
Semisimple Hopf actions on Weyl algebras
title Semisimple Hopf actions on Weyl algebras
title_full Semisimple Hopf actions on Weyl algebras
title_fullStr Semisimple Hopf actions on Weyl algebras
title_full_unstemmed Semisimple Hopf actions on Weyl algebras
title_short Semisimple Hopf actions on Weyl algebras
title_sort semisimple hopf actions on weyl algebras
url http://hdl.handle.net/1721.1/111128
https://orcid.org/0000-0002-0710-1416
work_keys_str_mv AT cuadrajuan semisimplehopfactionsonweylalgebras
AT etingofpaveli semisimplehopfactionsonweylalgebras
AT waltonchelsea semisimplehopfactionsonweylalgebras