CrossCat: A fully Bayesian nonparametric method for analyzing heterogeneous, high dimensional data
There is a widespread need for statistical methods that can analyze high-dimensional datasets without imposing restrictive or opaque modeling assumptions. This paper describes a domain-general data analysis method called CrossCat. CrossCat infers multiple non-overlapping views of the data, each cons...
Main Authors: | , , , , , |
---|---|
其他作者: | |
格式: | 文件 |
出版: |
MIT Press
2017
|
在线阅读: | http://hdl.handle.net/1721.1/112621 https://orcid.org/0000-0002-1925-2035 |